The nature of the problem was that my cast iron flange bearings were not attached
rigidly enough to the wheels. I had mounted them at a 45-degree angle to each
other, so I couldn't just replace my wood screws with washers with bolts going
through the wheel to press them together. I didn't really want to do that anyway,
because as the wood expands and contracts with humidity, the bolts would eventually
become loose too.
So I set out to make new wooden flanges. Although wood is not as strong as cast iron, I knew I could count on a really good glue bond between a wooden flange and the wooden wheel.
I reused the bearings from my self-aligning bearing flanges.
The bearing had an outside spherical surface of exactly 52 mm in diameter.
But my Forstner drill bit set is in imperial sizes, and the closest
I had was 2", which works out to 50.8 mm. So I had to expand the holes
with a sanding drum on my drill press. A spindle sander would have been better,
but I don't have one.
I had previously trued the upper wheel by mounting it on my extra long drive shaft of the bandsaw and spinning it up that way. But I had since shortened this shaft to its final length. So I made a temporary pulley, and attached it to the upper wheel with a pair of wood screws. This was enough to spin up the upper wheel on my workbench. Using some chisels on the wheels, in a lathe-like fashion, I turned it to run true again. When I checked the wheel with a dial indicator, it was within a range of 0.002" (.05 mm) all the way around.
I also found a slight bit of creak on my lower wheel. The 7'8" shaft fit reasonably
rightly in the 7/8" hole, but apparently, not tightly enough.
So I figured, why not just glue the shaft into the wheel?
If the glue holds all is well. If it works its way loose, I can always get
that shaft out and try something else. Worst case, I'd just have to make a new wheel.
So I added these little blocks of wood to occupy this cavity, so that I wouldn't get as much sawdust collecting in the wheels.
On later bandsaws, I just made the wheel one disk of the right thickness to avoid this.
Looking for sources of vibration in the saw, I realized that my back pulley did not entirely run true. I had cut this pulley out on the table saw, as opposed to turning it on its shaft.
But on turning the pulley, I slipped with the chisel and it caught on the spinning pulley, stopping it instantly. But my lower bandsaw wheel, spinning on the same shaft, acted as a flywheel. The momentum from the lower wheel ended up breaking the screw that I used to protrude from the pulley into a hole in the shaft.
So I figured the solution was to just drill a hole through the shaft
and put a bolt all the way through. Unfortunately, I tried to do that with
a hand drill and broke a drill bit in the process.
So I tried to drill another hole 90 degrees to my first
hole, and broke another drill bit, probably because I hit the remnants of the
drill bit from the first attempt.
So I ground a keyway into my shaft using an angle grinder. I used a block of hardwood
as a guide, but overall, it was a pretty freehand operation.
On my second bandsaw design, I just put the pulley directly
on the wheel, so that eliminated the whole issue of coupling a wheel to a shaft.
That bearing has to take the twice the load of the blade tension. Actually, a bit more than that because the lower wheel is cantilevered out from the bearing. So effectively. That bearing gets twice as much load as any of the other bearings in my saw.
Bearings of this size are usually rated for a side load of over 10 kilonewtons,
which works out to over 2000 pounds.
My bandsaw, tensioned to 150 pounds, would only apply just over 300 pounds to the bearing.
So that should be well within the load rating of a good quality bearing.
The problem is, I was using cheap Chinese made bearings bought at Princess Auto.
The mating surface between the flange and the bearing is actually spherical, so they fit tightly at any moderate angle.
If the new bearing ends up developing a knock as well, I'll get a good quality bearing from a bearing store. Those cost around $25 each. It's only the lower front bearing that has developed a problem though. The other bearings aren't loaded as heavily.
(Update, three years later: Still using that saw, bearing still good)
More on Building a bandsaw