Why wood moisture content matters
I had mixed feelings about doing that. I like free stuff, but I wouldn't want to get to the point where my videos start with "...brought to you by Powermatic...". Just not my thing. Plus I'd had a disagreement at some point with the makers of a dowel jig who claimed dowel joints are always stronger, even though my tests came out differently. I don't think it would be much fun for me to just review the meter, so the focus of this article and video are going to be more about why wood moisture content matters.
I made the seat of this stool on the lathe, so it was perfectly round. Out of curiosity, I set the trammel points to exactly span the top in the direction of the grain, then turned them to span the top perpendicular to the grain. You can see there's at least 5 mm (1/4") of shrinkage with respect to the length. I built that stool in the summer, and with drier winter humidity, it shrunk a bit. One always has to take some amount of wood movement into account, but starting with wood that is sufficiently dry reduces the amount of change that furniture has to deal with.
There are two ways of dealing with different rates of wood shrinkage. One way is to rigidly hold the wood in place to overpower wood movement. Plywood works that way. Most mortise and tenon joints also rely on this. I also relied on this with the cross grained overlapping joint of this bandsaw frame. The long direction of the pieces simply prevent the wood from shrinking or expanding by holding it in place.
To overpower the wood, a joint has to be tight, with lots of gluing surface. Some people like the idea of really big mortise and tenon joints for workbenches, but that's actually not a good idea. If you have a really large tenon, the glue surface is probably not enough to "hold" it against wood movement and it will simply shrink and expand, breaking the glue joints around it. Any time you have a tenon that's thicker than maybe 15 mm (5/8"), you should consider switching to a double tenon joint instead.
The central panel in a solid-wood raised panel door is held in slots in the rails surrounding it. With seasonal changes in moisture, the panel will change in width by a little bit. But instead of busting out of the frame or cracking apart, it just expands into the slots in the frame surrounding it. A beautiful solution to a classic problem.
But I came up with a neat experiment that shows a significant effect in half an hour. I used a thin piece of hardwood, just 4 mm thick, but 20 cm wide. I then brushed water onto one side of it, and placed it, wet side down, on the table. Then I waited...
This sort of thing happens much faster with thin pieces of wood, and applying water directly also speeds it up. With thicker pieces of wood, without getting water on them directly, moisture changes take weeks. Though initial drying from green to dry takes much longer - on the order of a year. There was no trace of wetness on the bowed board two hours later. I forced the piece of wood flat on the table two hours later and measured it's width, and it had at that point gained 1.5 mm. Unfortunately, this piece of wood was too thin to measure its moisture content with the Wagner meter.
Cheap meters, like the one I had previously experimented with, don't allow you to compensate for wood species and density at all. You just know that they will read higher for heavier woods, so you sort of have to mentally compensate. I can't say that either approach is better. I wish the Wagner meter always showed the entered density on the screen. As it is, it's too easy to set the density incorrectly and then forget about it.
Having said that, this problem is not unique to the Wagner meter. Any electrical method of measuring moisture content is going to be affected by wood density.
Experimenting with layering different densities of wood and measuring the stack, I found that whatever sample occupied the first 1/4" (6 mm) of depth dominated the readings. I'd say about two thirds of the meter's reading are from the first 6 mm of wood. So the meter wouldn't really be able to tell you if a 1.5" (38 mm) thick piece of lumber still has residual moisture in the middle.
Wagner says the meter measures much deeper than pin type meters, and I'm inclined to agree with that. Though if I were to drive some nails all the way through the wood and use my method I could measure all the way through. But that's not really practical. Imagine if a lumber yard did that, and then conveniently left the nails in the wood so that you could then "discover" them with your thickness planer! It might be more practical to cut a sample board in half and then measure it. Fact is, I haven't used my nails method since I came up with it, so that is, in a way, a vote for contactless moisture meters. If something is too inconvenient, you end up not using it very much. The Wagner meter definitely wins on that front!
See also: ![]() ![]() hardness test Back to my Woodworking website |