Fun with the Venturi effect
Wikipedia defines the Venturi effect as:
"The Venturi effect is the reduction in fluid pressure that results when
a fluid flows through a constricted section of pipe."
The simplest demonstration is to use a compressed air hose to blow air along a tube of cardboard. I'm blowing air from the middle of the tube towards one end. This causes suction at the other end, which causes sawdust to get sucked through the tube.
As air is ejected from nozzle A, it mixes with the air in the tube at B Imagine that the air from the nozzle mixes with four times as much air. Momentum is conserved, so this cloud of air, now five times as much as came out of the nozzle, is now moving at one fifth the speed of the jet from the nozzle. All that air moving to the right requires replacement air to be pulled in from the left. So we now have suction at C. Moving five times as much air may seem efficient, but the kinetic energy of the moving air is a function of velocity squared. So we may have five times as much air moving, but the kinetic energy per volume of air is now 1/25th of what it was in the jet, and the total kinetic energy is one fifth of what we started with. Venturi pumps are not efficient. But the Venturi effect can be useful if one needs to suck up something that shouldn't go through a pump or fan. For example, a sandblaster uses the Venturi effect to pull the abrasive sand into the stream of high speed air from a compressor.
As the jet of air from the nozzle turbulently mixed with the surrounding air, it caused a lot more air to move, which causes suction of air from behind it. There isn't any sort of bunching up or feathering towards the edges of the sawdust, which you would get if it had been cleared by blowing at it, it was mostly cleared by suction.
Gas burns much cleaner and hotter when pre-mixed with air. This principle was discovered by Robert Bunsen, after whom the Bunsen burner is named. And the Bunsen burner is yet another use of the Venturi effect.
The Venturi effect is also used in Venturi vacuum pumps, which are sometimes used for vacuum pressing veneers. So yet another woodworking connection.
The straw is positioned in such a way that it ends in an area of suction created by the stream coming from the nozzle (as I mentioned with the sawdust on the workbench demonstration earlier)
Even so, if I aim at the torch, even from a distance, I just blow out the flame without igniting my stream! It's not unlike lighting a blowtorch with a match - if you aim the torch right at the match, it just blows it out. You have to approach the torch from the side to light it with a match. For my spray setup, I found it worked best to position the stream just above the flame. The torch ignites the stream as it goes by, making for a nice roaring flame. I needed to keep my spray over the torch to keep it lit. The flame doesn't propagate back along the sprayed stream as fast as the air is moving, so without continuous lighting near the nozzle, the flame gets pushed away and the spray extinguishes.
I had to tweak the straw on my sprayer to get a richer mixture. Initially, my mixture was on the lean side. A lean mixture means there is enough air to burn all the fuel, but to get a nice bright flame, you need a rich mixture with too much fuel in the air to fully burn. This means not all the carbon burns to carbon dioxide. The excess carbon then forms particles of soot. The white hot soot in turn is what makes the flame glow bright. Superheated air and combustion products (CO2 and H2O) by themselves won't glow. That's why a jet of gas alone burns with a yellow flame, but when pre-mixed with enough air, you just get a faint blue flame. Closing the air inlet on a Bunsen burner makes for a bigger yellow flame, but it won't be as hot. Or on an oxy-acetylene torch -- turning on the oxygen makes the flame much hotter, but the flame gives off less light. I also tried my store bought spray gun. That produced a richer mixture - not surprising. After all, the spray gun is meant to spray paint, not blow it all over the place. But my spray gun is a relatively small one, so the flame I got from that wans't nearly as big as with my bent straw experiment.
Gyro effect explainedwithout math
The hui game Alsoknown as gee-haw stick
Homemade marbleshooting air gun
Back to my Woodworking website.
|